

THE ELECTRIC DECADE

Discover how electrification technologies support the EU's climate goals

1st JOINT ONLINE WORKSHOP of Horizon Europe projects

17th of January 2024 | 9.00 - 12.00 CET

STORMING **PROJECT**

Patricia Benito

Dipartimento Chimica Industriale "Toso Montanari", Alma Mater Studiorum - Università di Bologna patricia.benito3@unibo.it

STructured unconventional reactors for CO₂-fRee Methane catalytic crackING

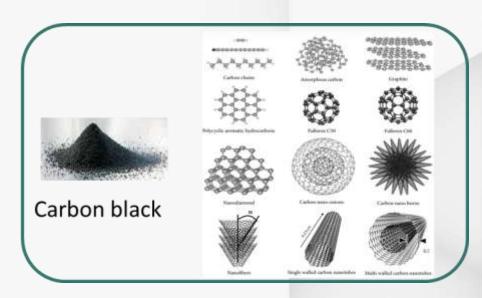
HORIZON-CL5-2021-D2-01-09: Methane cracking to usable hydrogen and carbon HORIZON-WIDERA-2022-ACCESS-07 (2nd cut-off)

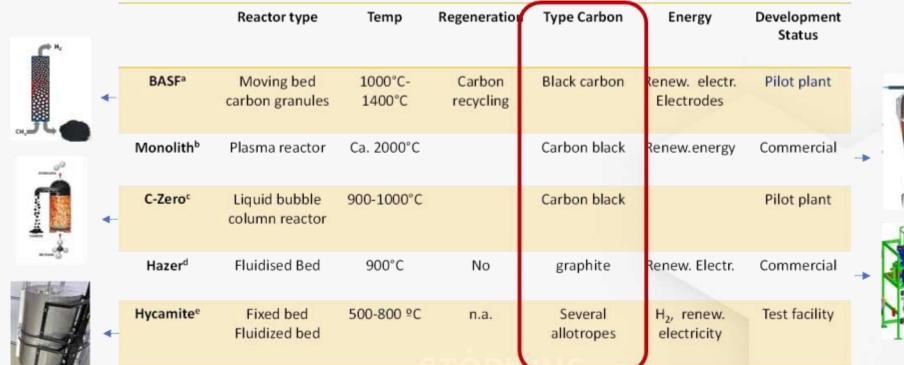
Starting date: 1° September 2022

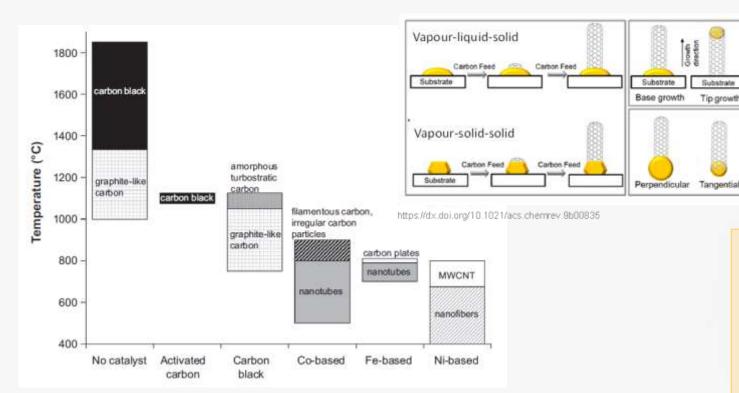
Project duration: 36 months

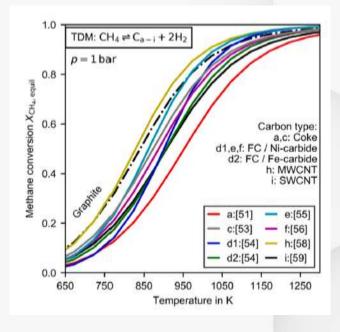
Budget: 3 125 714.75 Euro

305 833.00 Euro for UK partner


Decarbonization of H₂



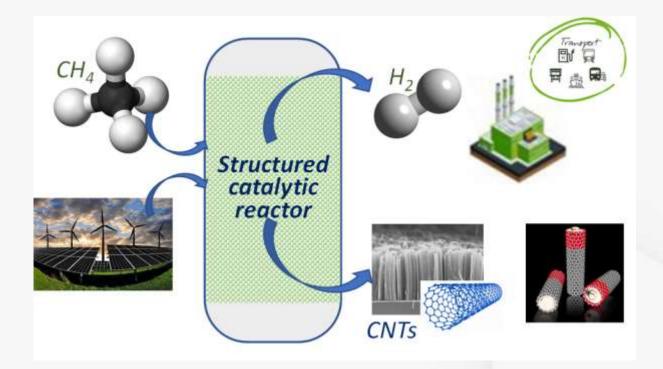




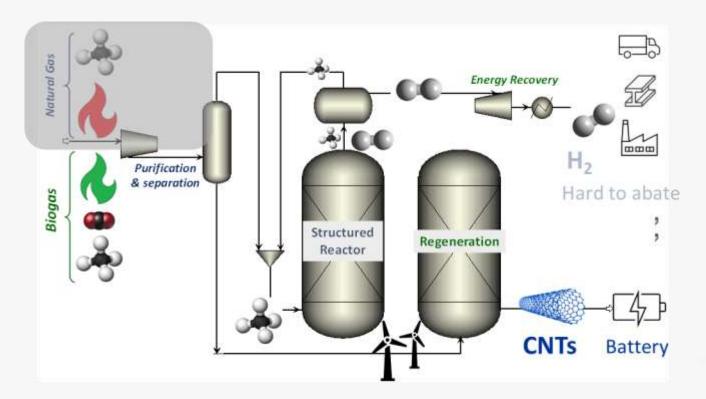
Catalytic Methane

decomposition $CH_{4(g)} \leftrightarrows C_{(s)} + 2H_{2(g)} \quad \Delta H^{0}_{298K} = 74.5 \text{ kJ/mol}$

Type of carbon depends on reaction conditions and catalyst


Challenges:

- Carbon has a twofold deactivation effect:
 - Deactivation catalytic sites
 - Clogging of the reactor
- Heat transfer


STructured unconventional reactors for CO₂ -fRee Methane catalytic crackING

To develop breakthrough structured catalytic reactors powered by renewable electricity to simultaneously produce CO_2 -free or CO_2 -negative \underline{H}_2 and $\underline{high-quality}$ carbon nanotubes, CNTs, in a continuous technology that could be deployed in a sustainable manner.

Production of captive H₂ (on-site production) and the capture of C from the CH₄ as CNTs, an economic credit that reduces the delivered net cost of H₂.

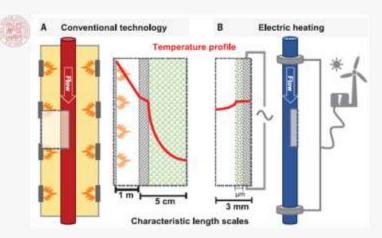
Early-stage breakthrough catalytic technologies powered by renewable energy to

□ overcome CH₄ cracking challenges

✓ match with the final H₂ application, the type of feedstock, and the supply of renewable energy

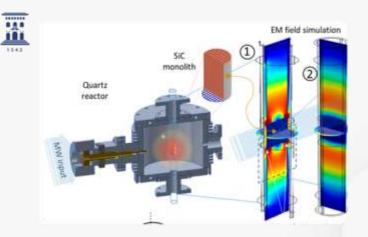
Catalysts and catalytic reactors operating in a continuous mode with maximized efficiency.

Parallel reactors: cyclic mode

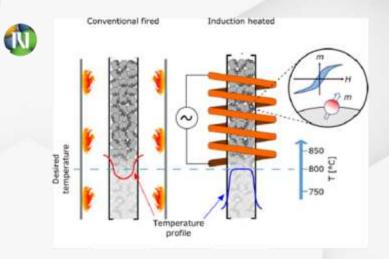

Electrification of structured reactors

Heat transfer:

Electrified reactors


Three complementary **structured** catalytic **reactors** powered by **renewable energy**

Joule heated fixed bed


- ☐ Heat generated by passing a current through a resistive material.
- ☑ Avoid wall effect and few to no thermal gradients.

Microwave heated fluidized bed

- ☑ Selective dielectric heating of catalytic materials.
- ☑ Gas-solid temperature control

Induction heated fluidized bed


- Selective heating of electrically conductive and ferromagnetic materials.
- ☑ Fast heating, enhance heat transfer.

Fe-based structured

catalysts or materials

Devices with advanced design, easy production, and high adaptation.

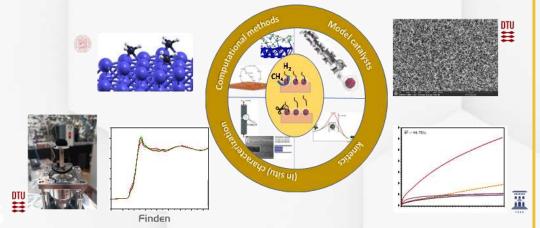
Mark Mark Source CCD (Source DLD

Computational Fluid Dynamics (CFD)

Combination of **geometry** and **composition** to better **control**:

- Heating:

Resistance for Joule Heating
Dielectric properties to absorb MWs
Ferromagnetic materials for Induction Heating


- Pressure drop

- Heat and mass transfer
- Mechanical stability
- Activity

Complex process dynamics

- Fe-based catalysts selective for CNTs growth
 - ≥ non-toxic & easily available
 - umore active and stable at high temperature than Ni
- Chemical scissor protocols (waste-free) to harvest CNTs and regenerate the catalyst

Impacts STORMING

technology

Switching to renewable energy

Improved energy efficiency (60 % efficiency, > 95 % considering CNTs) & Selectivity (100% H₂)

Directly heat the catalyst

Accurate thermal control

Operate at < 800°C no side-products

Process intensification

Operating under transient conditions (quick start-up and shut-down) determined by supply (feedstock, renewable energy)/demand requirements.

Avoid GHG emissions (CO2 and NOx)

10 % decrease cost than SMR + CCS

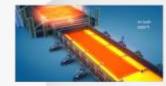
Heavy-transport

☑ Fuel cell

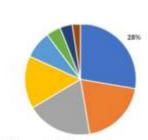
Hard to abate industry

High temperature heat Combustion

Steel manufacturing Brightening (DRI)


Chemical companies

 $N_2 + H_2 = NH$


Float glass Tin bath

(MW)CNTS for batteries to replace graphite (CRM) MWCNTs prize in current market (from 0.4 to 285 US\$ /g)

Global Carbon Nanotubes Market Share, By Application, 2022

 Aerospace and Defense Chemical & Polymers

■ Energy

- **■** Medical
- = Electricals & Electronics a Others

Source: www.gennoights.com

Pathway to TRL9

TRL5 **50** g_{H2}/h 150 g_{CNTs}/h (Bio) CH4 Structured catalytic reactor HYGEAR **Economical** Sustainability **Clean**carb Assessment Technical **Environmental**

Indicate the end TRL of your project. Once your project will be over, what is needed to achieve the consortium vision?

TO BE FINISHED

TRL9

Fixed bed reactor ~100-1000 kgH₂/d

Fluidized bed reactor ~100'-10000 kgH₂/d

STORMING

Thank you for your attention!

